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Abstract
For two point sets A, B ⊂ Rd, with |A| = |B| = n and d > 1 a constant, and for a para-
meter ε > 0, we present a randomized algorithm that, with probability at least 1/2, computes
in O(n(ε−O(d3) log log n + ε−O(d) log4 n log5 log n)) time, an ε-approximate minimum-cost perfect
matching under any Lp-metric. All previous algorithms take n(ε−1 log n)Ω(d) time. We use a
randomly-shifted tree, with a polynomial branching factor and O(log log n) height, to define a
tree-based distance function that ε-approximates the Lp metric as well as to compute the matching
hierarchically. Then, we apply the primal-dual framework on a compressed representation of the
residual graph to obtain an efficient implementation of the Hungarian-search and augment operations.
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1 Introduction

Let A, B ⊂ Rd be two point sets of size n each, where d > 1 is a constant, and d(·, ·) a
metric. Let G = (A ∪B, A×B) be a weighted complete bipartite graph in which the cost of
an edge (a, b) ∈ A×B is d(a, b). A matching in G is a set of vertex-disjoint edges in G. A
perfect matching in G is a matching of size n. The cost of a matching M , denoted by ¢(M),
is ¢(M) =

∑
(a,b)∈M d(a, b). The minimum-cost perfect matching in G, denoted by M∗, is a

perfect matching in G of the minimum cost. For any ε > 0, a perfect matching M in G is
called an ε-approximate matching if ¢(M) ≤ (1 + ε)¢(M∗). We consider the case where the
cost d(a, b) is the Lp distance denoted by ∥a− b∥p. The optimal transport (OT) distance
between two (possibly continuous) distributions can be estimated by taking n samples from
both distributions and then computing their minimum-cost perfect matching. The wide
applicability of OT in Machine Learning and Computer Vision [17, 20, 4] has motivated the
design of fast exact and approximation algorithms that compute a minimum-cost perfect
matching. In this paper, for the Lp-norm, we present a new algorithm to computing an
ε-approximate matching.

Related work. For an arbitrary weighted bipartite graph with n vertices and m edges, the
Kuhn-Munkres algorithm [13] computes a minimum-weight bipartite matching in a weighted
bipartite graph in O(mn + n2 log n) time. For bipartite graphs with non-negative integer
costs bounded by C, Gabow and Tarjan [9] gave an O(m

√
n log(nC))-time algorithm. Both
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4:2 An Improved ε-Approximation Algorithm for Geometric Bipartite Matching

the Hungarian and Gabow-Tarjan algorithms are combinatorial algorithms that iteratively
find an augmenting path and augment the matching along this path. The augmenting paths
are chosen such that the increase in the matching cost after each augmentation is minimized.
This cost increase is referred to as the net-cost of the path. Alternate approaches such as the
electrical flow [21] method and the matrix multiplication based methods [15] can be used to
obtain fast matching algorithms. The current best known execution time is Õ(m + n1.5).

When A ∪ B is a 2-dimensional point set in the Euclidean space, a Euclidean
minimum-weight matching (EMWM) can be computed in O(n2 polylog n) time [12], and
in O(n3/2 polylog n) time when the points have integer coordinates [19, 18]. For this case,
it is easy to compute a O(log n)-approximate matching in expectation using a randomly
shifted quad-tree [6, 7]. Agarwal and Varadarajan [1] used the shifted quad-tree to compute
an O(log 1/δ)-approximate solution in O(n1+δ) time. Following this, there were several
results that used such a decomposition; see for instance [11, 3, 8]. The current best-known
approximation algorithm for computing EMWM is by Raghvendra and Agarwal [16], which
computes an ε-approximate matching with high probability in n(ε−1 log n)O(d) time. In their
algorithm, each cell □ of a randomly shifted quad-tree Q is decomposed by a uniform grid
into (log n/ε)O(d) subcells. The Euclidean distance between any pair of points u, v with □ as
their least common ancestor in Q is ε-approximated by the distance between the subcells
of □ that contain u and v respectively. Their algorithm uses Q to compute a minimum
net-cost augmenting path P with respect to the new distance and augment the matching
along this path, both in time O(|P |poly log n). They obtain a near-linear execution time
by bounding the total length of all augmenting paths by O(ε−1n log n). To compute these
paths quickly, they compress the residual graph inside □ into a graph of (log n/ε)O(d) size
and execute Bellman-Ford algorithm on this graph. Lahn and Raghvendra [14] extended
this framework to approximate the 2-Wasserstein distance of planar point sets, i.e., an
approximate minimum-cost matching when d(u, v) is ∥u− v∥2

2. Unlike Euclidean distance,
approximating the squared-Euclidean distance using Q results in a polynomial sized com-
pressed residual graph at each cell. Since using Bellman-Ford algorithm on such a compressed
graph can be prohibitively expensive, they introduce a novel primal-dual framework and
define compressed feasibility on the compressed residual graph. Using this framework, they
are able to find an augmenting path as well as augment it along this path in sub-linear time.
Consequently, they achieve an O(n5/4poly(log n, 1/ε)) time algorithm for the 2-Wasserstein
distance between planar point sets. Recently, Agarwal et al. [2] have designed a deterministic
algorithm that uses multiple quadtrees to compute a (1 + ε)-approximate Euclidean matching
in n(ε−1 log n)O(d) time.

Our result. The following theorem states our main result.

▶ Theorem 1. Let A, B be two point sets in Rd of size n each, for a constant d > 1, and let
0 < ε ≤ 1 be a parameter. With probability at least 1/2, an ε-approximate matching under
any Lp-metric can be computed in O(n(ε−O(d3) log log n + ε−O(d) log4 n log5 log n)) time.

For the sake of simplicity, we describe the algorithm for the Euclidean metric. It can be
extended to other Lp-metrics in a straight forward manner. For any two points a and b, we use
∥a−b∥ to denote the Euclidean distance between them. Using standard techniques [16, 14], we
can preprocess the input points in O(n log n) time so that the point sets A and B satisfy the
following conditions: (P1) All input points have integer coordinates bounded by nO(1). (P2)
No integer grid point contains points of both A and B. (P3) ¢(M∗) ∈

[
3

√
dn

ε , 9
√

dn
ε

]
. Details

of how we preprocess A and B can be found in the Appendix (Section A). Assuming A and
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B satisfy (P1)–(P3), we present an algorithm that, with probability 1/2, computes an (ε/2)-
approximate matching in O(n(ε−O(d3) + ε−O(d) log4 n log4 log n)) time. The preprocessing
step adds an additional log log n factor to the running time of the algorithm, resulting in
the running time mentioned in Theorem 1. In the following, we provide an overview of our
approach and its comparison with existing work.

As in [16, 14], we also define a tree based distance dT(·, ·) that approximates the Euclidean
distance (Section 2). Unlike [16, 14] that use a quad-tree of height O(log n), we build a tree T

of height O(log log n) (see Section 2.1). Each cell of T at level i (root is assigned level 0) with
a side length of ℓi is partitioned using a randomly-shifted grid into children whose side-length
ℓi+1 = ℓc

i where c < 1 is a constant that depends only on d. Given that the point set have
integer coordinates bounded by nO(1) (from (P1)), the height of T is h = O(log log n). For
any pair of points (u, v) with a cell □ of level i as its least common ancestor, let □u and □v

be the children of □ that contain u and v respectively. As in the case of a randomly shifted-
quadtree where we get an O(h) = O(log n) approximation, one can show that the distance
between the centers of □u and □v is a O(h) = O(log log n) approximation of the Euclidean
distance (in expectation). We obtain a refined (1 + ε)-approximation of the Euclidean
distance by partitioning □u and □v into finer subcells and then using the distance between
the centers of those sub-cells that contain u and v. As in [16, 14], one can divide each cell
into O(hd) many subcells and obtain a (1+ε)-approximation of the Euclidean distance. With
h = log log n, this will result in an execution time of Ω(n log4 n(ε−1 log log n)d3). Instead, we
partition a cell into subcells more carefully (See the definition of subcells in Section 2.2).
Intuitively, we make the number of subcells a function of the height of the cell, i.e., smaller
cells have significantly fewer than logO(d) log n subcells. As a result, we are able to improve
the dependence of our algorithm from logO(d3) log n to logO(d) log n. Interestingly, we show
that the expected distortion is higher for cells that are closer to the leaves. Nonetheless, we
are able to bound the expected error of our distance between any two points u and v by
ε∥u− v∥ (See Lemma 3).

Similar to [14], our algorithm compactly stores the residual graph (Section 5.2) as well
as the dual weights (Section 5.3) and uses this compact representation to efficiently find
augmenting paths. The size of the compressed residual graph inside any cell is bounded by the
side-length of its child, i.e., smaller cells have a smaller compressed graph (Lemma 14). As a
result, finding augmenting paths in smaller cells is significantly faster than that in larger ones.
In our analysis, we show that most of the augmenting paths in the algorithm are found in
smaller cells which can be computed quickly. In particular, only O( n

εℓi+1
) augmenting paths

are found inside a compressed graph at level i, each of which can be found in O(ℓi+1 log2 n)
time. Combining across all O(log log n) levels, we get a near-linear execution time.

Typical matching algorithms that are based on a compressed residual graph modify
the dual weights and find an augmenting path with respect to current matching M . The
algorithms presented in [16, 14] classify edges into local and non-local which they use critically
in computing a minimum net-cost augmenting path. We remove the need for this classification
and make our algorithm and its analysis simpler. Instead of using the classification, our
algorithm carefully updates the dual weights, possibly modifies a matching M to another
matching M ′ of the same size and cost, and finds an augmenting path with respect to the
new matching M ′.

SWAT 2022



4:4 An Improved ε-Approximation Algorithm for Geometric Bipartite Matching

2 Hierarchical Partition and the Distance Function

In this section, we present a randomized hierarchical partitioning of space, used to define a
new distance function dT(·, ·) that approximates the Euclidean metric (in expected sense) as
well as to guide the construction of matching (in a hierarchical manner).

2.1 Hierarchical Partitioning
For a value ℓ > 0, let G[ℓ] be the d-dimensional uniform grid with cell side-length ℓ, i.e.,
G[ℓ] = (ℓZ)d + [0, ℓ]d. For a point x ∈ Rd, we use G[ℓ] + x to denote the translate of G[ℓ]
by x. For any rectangle R, let AR = A ∩ R and BR = B ∩ R. We say that R is non-empty
if AR ∪ BR ̸= ∅. Given R and a grid G, let C[R, G] denote the set of non-empty rectangles
in the rectangular subdivision of R induced by G. If G is fixed or clear from the context,
we use C[R] to denote C[R, G]. By abusing the notation slightly, we use C[R] to denote the
subdivision as well as the set of non-empty rectangles in the subdivision. For a non-empty
rectangle R, we designate one of the points in AR ∪BR, say rR, as its representative.

Let □0 be the smallest axis-aligned hypercube that contains A ∪ B. Let ℓ0 be its side
length. By property (P1), ℓ0 = nO(1). We construct a hierarchical partition and the
associated tree T , as follows. Each node in T is associated with a non-empty rectangle which
we refer to as a cell and we will not distinguish between the two. The level of a node (and
the corresponding rectangle) is the length of the path in T from the root. The root of T

is □0 and its level is 0. Set α = 1 − 1
8d+2 . For i > 0, set ℓi = ℓi−1

α. Let h > 0 be the
smallest integer such that ℓh ≤ (ε−1d)

α
(1−α)2 . Any cell □ in T of level h is designated as a

leaf node. By construction, h = O(log log n) The choice for the condition of the leaf node
will become apparent in Section 2.2. Otherwise, we choose a random point, ξ□ ∈ [0, ℓi+1]d
and set G = G[ℓi+1] + ξ□. Let C[□] := C[□, G] be the subdivision of □ induced by G. Each
rectangle □′ ∈ C[□] is a level i + 1 node. We create a child of □ in T for each non-empty
rectangle □′ ∈ C[□] and recursively construct the partition and associated sub-tree of □′.
For any 0 ≤ i ≤ h− 1, let ∆[i] denote all cells of T of level i.

2.2 Euclidean Distance Approximation
For any pair of points (a, b) ∈ A×B, let □ be the least common ancestor of a and b in T ,
i.e., the cell with the highest level that contains a and b. Let the level of □ be i. We define
the level of (a, b), lev(a, b), to be i and refer to (a, b) as a level i edge. Let □a and □b be the
children of □ that contain a and b respectively. We divide □a and □b into O(ε−d(h− i)2d)
subcells and show that the distance between any two points in the subcells that contain a

and b is a (1 + ε)-approximation of ∥a− b∥. Note that the smaller cells, i.e., those at a higher
level, have fewer subcells. Using this and the bound on the side-length of any leaf node of T ,
we can bound the number of subcells of the children of □ by ℓi+1 (independent of log log n).
In Section 5, we use this fact to compress the residual graph more efficiently.

Subcells: Any cell □ is divided into subcells as follows. For each 0 < i < h, set

µi = ε

c2
√

d(h− i)2
ℓi, (1)

where c2 = 24π2. We set µ0 = ∞ and µh = 0. A subcell is formed by combining a subset
of children of □ such that the diameter of points in these children is no more than µi. Set
µ̄i =

⌊
µi√

dℓi+1

⌋
ℓi+1 (By Lemma 2 below,

⌊
µi√

dℓi+1

⌋
is a positive integer). For any non-leaf
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Figure 1 Euclidean distance approximation: The grey rectangular subdivision shows the children
of □ (on left) and the bold grey rectangular subdivision shows the subcells.

and non-root cell of level i in the tree T , let G□ = G[µ̄i] + ξ□, where ξ□ is the random shift
for the grid constructed in □. By construction, the boundary of grid cells in G□ are aligned
with those of G[ℓi+1] + ξ□ (See Figure 1). Therefore, each non-empty child cell of □ lies in
exactly one subcell of subdivision C[□, G□]. Let S□ be this set of non-empty subcells, and
let R□ be the set of representative points of S□, i.e., R□ = {rR | R ∈ S□}. It is clear that the
diameter of each subcell is at most µi. The following lemma relates the side-length of the
children of a cell to the diameter of the subcells of that cell.

▶ Lemma 2. For any 0 ≤ i < h, ℓi+1 ≤ µi/
√

d.

WSPD: For any cell □, the number of pairs of children subcells of □ can be prohibitively
large. We use a well-separated pair decomposition (WSPD) to compactly store these pairs.
For simplicity of the algorithm, similar to [14], we use WSPD to define our Euclidean distance
approximation. For a point set X, let DiamX be the distance between the farthest pair
of points in X. For any ε > 0, two point sets X and Y are called ε-well-separated if for
all x ∈ X and y ∈ Y , max{DiamX , DiamY } ≤ (ε/12)∥x − y∥. Given a point set X ∈ Rd

of size n and a parameter ε > 0, an ε-WSPD (or simply WSPD for brevity) of X is a set
W = {(R1, S1), · · ·, (Rk, Sk)} such that (i) each (Ri, Si) is ε-well separated, (ii) for each pair
of points (u, v) ∈ X ×X, there is a unique pair (Ri, Si) ∈ W such that (u, v) ∈ Ri × Si or
(u, v) ∈ Si × Ri, and (iii) k = O(ε−dn). Also, if the spread of X, the ratio of the largest
to smallest pairwise distances, is bounded by nO(1), then every point of X participates
in O(ε−d log n) pairs of W. W can be constructed in O(n log n + ε−dn) time [5, 10]. For
any (Ri, Si) ∈ W, we choose an arbitrary pair (xi, yi) ∈ Ri × Si and make this pair its
representative pair.

For any non-leaf cell □ ∈ T , let X□ =
⋃

□′∈C[□] R□′ be the set of representative points of all
non-empty subcells of the children of □. We build an ε-WSPDW□ = {(R1, S1), . . . , (Rk, Sk)}
on X□. For a leaf cell □, we construct an ε-WSPD W□ on A□ ∪B□.

Distance function: We are now ready to define the distance function dT : A×B 7→ R≥0.
For any pair of points (a, b) ∈ A×B of level i with □ as its least common ancestor, if i = h,

SWAT 2022



4:6 An Improved ε-Approximation Algorithm for Geometric Bipartite Matching

we set δab = 0 and if i < h, we set δab = µi+1. For i = h, we set (Rj , Sj) to be the pair in
W□ such that (a, b) ∈ Rj × Sj . For i < h, (Rj , Sj) is defined as follows. Let □a (resp. □b)
be the child of □ that contains a (resp. b), and let ξa

ab (resp. ξb
ba) be the subcell of □a (resp.

□b) that contains a (resp. b). Let ra and rb be the representatives of ξa
ab and ξb

ba respectively.
Let (Rj , Sj) be the unique ε-well separated pair of W□ such that (ra, rb) ∈ Rj × Sj . We say
that (a, b) is covered by (Rj , Sj). Now let (xj , yj) be the representative pair of (Rj , Sj) (See
Figure 1). Then, we define

dT(a, b) = (1 + ε/4)∥xj − yj∥+ 2δab. (2)

Unlike in [16, 14], we create fewer subcells for cells that are closer to the leaves, which results
in a larger distortion for the edges within these cells. However, Lemmas 3 and 4 together
establish that the expected distortion on any pair of points (a, b) ∈ A×B is still proportional
to ε∥a− b∥. See Appendix B for the proof.

▶ Lemma 3. For any pair of points (a, b) ∈ A×B, E[δab] ≤ π2

6c2
ε∥a− b∥.

Using Lemma 3, we show in Lemma 4 that our distance function, in expectation, approx-
imates the Euclidean distance within a factor of (1 + ε).

▶ Lemma 4. For any pair of points (a, b) ∈ A × B, dT(a, b) ≥ ∥a − b∥. Furthermore,
E[dT(a, b)] ≤ (1 + ( 5π2

6c2
+ 11

24 )ε)∥a− b∥.

3 Preliminaries

We begin by presenting notations pertaining to the distance function that will help us describe
our algorithm. For any subset E ⊆ A × B of edges, we use w(E) =

∑
(u,v)∈E dT(u, v) to

denote the sum of the weights of the edges in E with respect to dT(·, ·).
Next, we describe definitions related to matching that will assist us in presenting our

algorithm. Let M be any matching in G. A vertex is free with respect to M if it has no edges
of M incident on it. An alternating path with respect to M is a simple path in G whose
edges alternate between those in M and not in M . An augmenting path is an alternating
path whose endpoints are free. We can augment M along an augmenting path P by simply
setting M ← M ⊕ P . For any matched vertex u ∈ A ∪ B, let m(u) denote the vertex to
which u is matched in M . For any edge (u, v), we define the net-cost ϕ(u, v) of (u, v) as
follows: ϕ(u, v) = dT(u, v) + δuv if (u, v) /∈M , and ϕ(u, v) = −dT(u, v) if (u, v) ∈M . For a
set E ⊆ A×B of edges, we define its net-cost as ϕ(E) =

∑
(u,v)∈E ϕ(u, v).

A residual graph GM is a directed bipartite graph that has the same set of edges as G
and for any matching (resp. non-matching) edge (a, b) ∈ A×B, it is directed from a to b

(resp. b to a). We refer to the weight of (a, b) in GM to be its net-cost. It is easy to see that
any simple directed path P in GM alternates between matching and non-matching edges and
therefore, P is an alternating path. For any rectangle R, let MR be the subset of the edges
of M with both endpoints inside R, and let GR

M denote the residual graph on AR ∪BR with
respect to the matching MR.

Similar to the Hungarian algorithm, our algorithm assigns a dual weight y(v) ≥ 0 to each
vertex v ∈ A∪B. We say that a matching M and a set of non-negative dual weights y(·) are
feasible if, for every directed edge (u, v) of GM , y(u)− y(v) ≤ ϕ(u, v). The presence of δuv

in the definition of ϕ(u, v) makes our feasibility conditions a relaxed form of the feasibility
conditions of the Hungarian algorithm. It can be shown that a feasible perfect matching is
(in expectation) a (1 + ε/2)-approximation of the minimum-cost Euclidean matching.
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▶ Lemma 5. Suppose a perfect matching M along with a set of dual weights y(·) are feasible
and let M∗ denote an optimal matching with respect to the Euclidean cost ¢(·). Then,
E[¢(M)] ≤ E[w(M)] ≤ (1 + ε/2)¢(M∗).

For any directed edge (u, v) of GM , we define its slack as s(u, v) = ϕ(u, v)− y(u) + y(v).
Based on the definition of feasibility, it is clear that s(u, v) ≥ 0. An edge (u, v) of GM is
called admissible if s(u, v) = 0. Given a feasible matching M , we can use the definition of
slack to relate the weight of any directed path P from u to v in GM to the slack on its edges:

ϕ(P ) =
∑

(u′,v′)∈P

(y(u′)− y(v′) + s(u′, v′)) = y(u)− y(v) +
∑

(u′,v′)∈P

s(u′, v′). (3)

We present a slow yet simple implementation to find a (1 + ε)-approximate matching,
which is basically the Hungarian algorithm. Initialize for every v ∈ A ∪ B, y(v) = 0 and
M ← ∅. At each step, we find an augmenting path in the residual graph as follows. We
set the edge weights in the residual graph to be their slacks. Next, starting from the free
vertices of B, we execute the Dijkstra’s shortest-path algorithm (also called the Hungarian
Search) in this graph. For any v ∈ A ∪B, let κv be the shortest path from any free vertex of
B to v. The algorithm returns the augmenting path P to a free vertex a of A that minimizes
κa; i.e, the minimum net-cost augmenting path. We update the dual weight of every vertex
v with κv < κa by setting y(v)← y(v)− κv + κa, making all edges of P admissible. Finally,
we set M = M ⊕ P . Augmenting the matching along P keeps the matching feasible. In the
following lemma, we state two observations of this algorithm.

▶ Lemma 6. During the execution of the algorithm described above,
(i) augmenting paths are computed in increasing order of their net-costs; and

(ii) if the net-cost of an augmenting path P is less than µi, then P does not contain any edge
of level lower than i (Recollect that any such edge has a cost of at least µi).
Lemma 6 suggests that we can search for augmenting paths in residual graph inside the

cells of ∆[i] until the net-cost of the augmenting path reaches µi.
The implementation described above requires n executions of Dijkstra’s algorithm, each

taking Θ(n2) time. In the next two sections, we use the properties of this algorithm (Lemma 6)
to present an efficient implementation of a variant of the above algorithm.

4 Overview of the Algorithm

We present our algorithm assuming the existence of three procedures, namely, Build,
HungarianSearch, and Augment procedures. The details of these procedures is deferred
to Section 5.

Our algorithm computes a feasible perfect matching by processing the cells of T in
decreasing order of their levels. Initially i← h− 1 and M ← ∅ (no matching is computed at
level h). For any cell □ ∈ ∆[i], the algorithm executes the following steps:

If i < h− 1, the algorithm calls the Build(□, M) procedure. This step builds a compact
representation of the residual graph (defined in Section 5.2).
The algorithm does the following iteratively: It calls the HungarianSearch(□, M)
procedure. This procedure returns NULL if there is no augmenting path in G□M of a
net-cost less than µi (see (1)). In this case, the algorithm stops processing □. Otherwise,
if there is an augmenting path, the procedure updates the dual weights y(·) and may
update M ←M ′ where M ′ is another matching of equal size such that y(·), M ′ is feasible

SWAT 2022



4:8 An Improved ε-Approximation Algorithm for Geometric Bipartite Matching

and w(M) = w(M ′). Then it returns a minimum net-cost augmenting path P with
respect to the updated matching. The algorithm calls Augment(□, P, M) to augment
M along P .

After all cells in ∆[i] are processed, if i = 0, the algorithm returns the matching M . Otherwise,
it sets i← i− 1 and continues.

Execution time of the procedures: The Build, HungarianSearch, and Augment
procedures presented in Section 5 have the following execution time. For any cell □, let n□ =
|A□ ∪B□|. If □ has a level i < h− 1, the Build procedure takes n□ log3 n(ε−1 log log n)O(d)

time. Next, we present the running time of HungarianSearch and Augment procedures.
For any cell □, if □ is at level h− 1 of T , then the HungarianSearch and Augment

procedures takes ε−O(d3) time. Otherwise, let i = lev(□) < h− 1. For j > i, let kj be the
number of level j cells that contains at least one vertex of P . If HungarianSearch returns
NULL, kj = 0. HungarianSearch takes

O(µi+1ε−O(d) log3 n log2 log n +
h−1∑

j=i+1
kjµj+1ε−O(d) log3 n log3 log n)

time and the total time taken by Augment is O(
∑h−1

j=i+1 kjµj+1ε−O(d) log3 n log3 log n).

Invariants: In Section 5, we also show that the three procedures maintain the following two
invariants while processing cells at level i. At any point, for the matching M , there is a set
of dual weights y(·) such that

(J1) M, y(·) is feasible, and,
(J2) For any vertex u ∈ B, y(u) ≤ µi. Furthermore, if u is a free vertex of B, its dual weight

y(u) ≥ µi+1. If u is a free vertex of A, its dual weight y(u) = 0.
Our procedures will not maintain dual weights y(·) explicitly but only guarantee the existence
of dual weights that satisfy (J1) and (J2). From (J1), (J2), and (3), we get the following:

▶ Corollary 7. For any i ≥ 0, while the algorithm is processing level i cells, the net-cost of
any augmenting path in GM is at least µi+1.

4.1 Analysis of the algorithm
Note that at the root cell □0, µ0 = ∞ and therefore, the second step of the algorithm
terminates only when there are no more augmenting paths in GM ; i.e, M is prefect. Since
M, y(·) is also feasible, from Lemma 5, it is (in expectation) a (1 + ε)-approximate matching.
Let W be the cost of the matching returned by our algorithm. From (P3) and the fact that
ε ≤ 1, we get that, with probability at least 1/2,

W = Θ(n/ε). (4)

Next, using the execution time of the procedures and the invariants they maintain, we bound
the execution time of our algorithm.

We introduce a few notation that helps us analyze our algorithm. Recollect that n□ =
|A□ ∪ B□| and M∗ denotes the optimal matching of A ∪ B with respect to the Euclidean
costs. Let P = ⟨P1, . . . , Pn⟩ be the sequence of augmenting paths computed by the algorithm
in the order in which they were computed. Let M0 = ∅ and let Mi be the matching after
augmenting along the path Pi.
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Efficiency analysis: We begin by bounding the time taken by Build(□, M) across all
O(log log n) levels of T by

h−1∑
i=0

∑
□∈∆[i]

n□ log3 n□(ε−1 log log n)O(d) = O(n log3 n(ε−1 log log n)O(d)). (5)

This equality follows from the fact that
∑

□∈∆[i] n□ = n and h = O(log log n). Next, we
bound the execution time of HungarianSearch and Augment procedures. For any cell □
of level h− 1, the HungarianSearch and Augment procedures take (1/ε)O(d3) time. The
total time taken across all level h− 1 cells is n/εO(d3). Next, we bound the running time for
cell at levels less than h− 1.

▶ Lemma 8. For i < h, the number of free vertices after processing level i cells is O
(

W
µi

)
.

Therefore, there are O( W
µi+1

) executions of HungarianSearch on level i cells. The time
taken by all HungarianSearch executions that return a NULL is at most(

W

µi+1

)
×O(µi+1ε−O(d) log3 n log2 log n) = O(Wε−O(d) log3 n log2 log n).

Otherwise, the HungarianSearch procedure returns a minimum net-cost augmenting path
P and the Augment procedure augments the matching along P . The time taken by each
such execution of HungarianSearch and Augment procedure is

O(µi+1ε−O(d) log3 n log2 log n +
h∑

j=i+1
kjµj+1ε−O(d) log3 n log3 log n)

= O(µi+1ε−O(d) log3 n log4 log n +
h∑

j=i+1
(kj − 1)µj+1ε−O(d) log3 n log3 log n). (6)

The equality follows from the fact that µi+1 > µj+1. While processing ∆[i], O(W/µi+1)
augmenting paths are found (see Lemma 8), so the first term in the RHS of (6) is
O(Wε−O(d) log3 n log5 log n) over all augmenting paths. Next, we bound the second term
over all augmenting paths.

Any augmenting path P has at least kj − 1 edges of level at most j − 1. Furthermore,
for any j′ ≥ j, every level j − 1 edge on P will contribute at most two new cells to kj′ .
Suppose γj is the number of level j − 1 edges across all augmenting paths. The second
term of the RHS of (6), when summed across all augmenting paths, can be written as
O(

∑h
j=1 γjµj+1ε−O(d) log3 n log3 log n). Lemma 9 (See Appendix B for a proof) establish

that γj = O
(

W log n
µj+1

)
.

▶ Lemma 9. For any 1 ≤ j ≤ h− 1, γj = O(W log n/µj+1).

Therefore, the second term of the RHS of (6) over all augmenting paths
is O(Wε−O(d) log4 n log4 log n) and the total running time is O(W (ε−O(d3) +
ε−O(d) log4 n log4 log n)). Since W = Θ(n/ε) with probability at least 1/2, we get the
following:

▶ Lemma 10. Let A, B ∈ Rd be two point sets of size n each and a parameter 0 < ε ≤ 1
that satisfy (P1)− (P3). With probability at least 1/2, an ε-approximate matching of A, B

can be computed in time O(n(ε−O(d3) + ε−O(d) log4 n log4 log n)).
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Figure 2 Illustrates two boundary clusters A
(R,S)
ξ1

and B
(R,S)
ξ2

. □1 and □2 are siblings. Grey
subdivision represents the subcells and matching edges are shown as solid black.

5 Algorithm Details

In this section, we present the details of the Build, HungarianSearch and Augment
procedures for some level i. For any cell, we cluster the points inside the cell into
O(µ1/4

i+1ε−d log n log log n) clusters (Section 5.1). We use these clusters to compress the
residual graph (Section 5.2) and feasibility conditions (Section 5.3). Next, we describe an
efficient implementation of the Build, HungarianSearch, and Augment procedures using
the compressed graph and feasibility conditions (Section 5.4). Our compressed graph is
different from [16, 14] as it does not recursively expand an augmenting path in this compressed
graph to an admissible augmenting path with respect to M . Instead, our algorithm may
modify the matching M to another matching M ′ of the same cost and size and returns an
admissible path with respect to M ′.

We begin by introducing a few notation that will assist in describing the procedures. For
any cell □ and ξ ∈ S□, let K ⊆ C[□] be the subset of children of □ that are contained inside
ξ. Let D(ξ) =

⋃
□′′∈K S□′′ be the set of subcells of the children cells of □ that lie inside ξ.

For any cell □ with lev(□) < h− 1 and for any j < lev(□), let □j be the ancestor of □ at
level j. Consider any □′ ∈ C[□] and a subcell ξ ∈ S□′ of □′. Then, it can be shown that
each level-j edge (a, b) ∈ A□j ×B□j with one endpoint in ξ is covered by at least one WSPD
pair from a subset Wj

ξ ⊆ W□j , with |Wj
ξ | = O(ε−1 log n).

▶ Lemma 11. For any cell □ with lev(□) < h− 1, for any j < lev(□), and for any subcell
ξ ∈ S□, |Wj

ξ | = O(ε−1 log n). Furthermore, for any non-empty subcell ξ′ ∈ D(ξ), Wj
ξ =Wj

ξ′ .

5.1 Clustering points
For any cell □ of level k ∈ [i, h − 1), we partition A□ ∪ B□ into a set of clusters denoted
by V□. For a subcell ξ of a child □′ of □ (i.e, ξ ∈ S□′), we partition Aξ ∪Bξ into three
types of clusters. We create one free cluster AF

ξ (resp. BF
ξ ) for all free points of Aξ (resp.

Bξ) and one internal cluster AI
ξ (resp. BI

ξ ) for all points a ∈ Aξ (resp. b ∈ Bξ) such that
m(a) ∈ □′ (resp. m(b) ∈ □′). Additionally, we create boundary clusters as follows: For any
level j ∈ [i, k], recall that Wj

ξ is the set of WSPD pairs that cover all level-j edges with
at least one endpoint in ξ. For every pair (R, S) ∈ Wj

ξ , we create one cluster A
(R,S)
ξ (resp.

B
(R,S)
ξ ) of A (resp. B) that contains all points a ∈ Aξ (resp. b ∈ Bξ) whose matching edge

(a, m(a)) (resp. (m(b), b)) is a level-j edge that is covered by the well-separated pair (R, S)
(See Figure 2). For each level j, there are O(ε−d log n) WSPD pairs in Wj

ξ and there are
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O(log log n) levels. Therefore, there are O(ε−d log n log log n) many clusters of this type.
For any cell □ of level k ∈ [i, h− 1), and for any child □′ ∈ C[□], every subcell ξ ∈ S□′

is formed by combining the children of □′. For any subcell ξ ∈ S□, the free and internal
clusters of ξ are formed as in Equation (7).

AF
ξ =

⋃
ξ′∈D(ξ)

AF
ξ′ , BF

ξ =
⋃

ξ′∈D(ξ)

BF
ξ′ . (7)

AI
ξ =

⋃
ξ′∈D(ξ)

{(AI
ξ′ ∪

⋃
(R,S)∈Wk+1

ξ′

A
(R,S)
ξ′ )}, BI

ξ =
⋃

ξ′∈D(ξ)

{(BI
ξ′ ∪

⋃
(R,S)∈Wk+1

ξ′

B
(R,S)
ξ′ )}.

For any i ≤ j ≤ k and any (R, S) ∈ Wj
ξ , the boundary cluster of ξ corresponding to (R, S) is

formed as follows.

A
(R,S)
ξ =

⋃
ξ′∈D(ξ)

A
(R,S)
ξ′ , B

(R,S)
ξ =

⋃
ξ′∈D(ξ)

B
(R,S)
ξ′ . (8)

Based on these relations, we extend the definition of D(·) for any cluster X to denote
the clusters that combine to form X as D(X). We refer to each cluster X ′ ∈ D(X) as a
child-cluster of X.

If □ is a level h − 1 node, for every child □′ ∈ C[□], we add A□′ ∪ B□′ to V□ and
appropriately classify them as free, internal, or boundary cluster depending on whether they
are free, matched inside □′, or outside □′.

We present an upper bound on the number of subcells of the children of any cell in the
following lemma. See Appendix B for a proof.

▶ Lemma 12. For any cell □ at level i < h− 1,
∑

□′∈C[□] |S□′ | = O(µ1/4
i+1).

For each cell □ at level i < h−1 and each child □′ ∈ C[□], any subcell ξ ∈ S□′ contributes
O(ε−d log n log log n) clusters to V□. Therefore, by Lemma 12,

▶ Corollary 13. For any cell □ at level i < h− 1, |V□| = O(µ1/4
i+1ε−d log n log log n).

5.2 Compressed residual graph
At every non-leaf node □ in the tree T , we create a compressed residual graph AG□ of G□M
with V□ being its vertex set. For any non-leaf node □, the vertex set of AG□ consists of
one vertex for each cluster in V□. For any cell □ and its child □′ ∈ C[□], we use V□(□′) to
denote the clusters of V□ that are inside □′. Next, we define E□, the set of edges of AG□,
and a weight Φ(X, Y ) for every edge (X, Y ) ∈ E□.

If lev(□) = h − 1, we simply set the edges of AG□ to be the edges of G□M and use its
net-cost as the weight, i.e., for any edge (u, v) in G□M , Φ(u, v) = ϕ(u, v). If lev(□) < h− 1,
then we define internal and bridge edges between vertices of V□ as follows:

Bridge edges: For any two children □1 ̸= □2 ∈ C[□], let X1 ∈ V□(□1) and X2 ∈ V□(□2)
be two clusters in those children, such that X1 (resp. X2) is a cluster of type A (resp. B).
If there is at least one non-matching edge (b, a) ∈ X2 ×X1, we add a directed edge from
X2 to X1 and assign it a weight equal to Φ(X2, X1) = ϕ(b, a). We refer to this edge as a
non-matching arc. If there is a matching edge (a, b) ∈ X1 ×X2, we add an edge from X1 to
X2 and set its cost to be Φ(X1, X2) = ϕ(a, b). We call this edge from X1 to X2 a matching
arc.

We classify clusters as entry and exit clusters, and define internal edges from an entry
to an exit cluster: The free cluster BF

ξ , the internal cluster AI
ξ , and every boundary cluster
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B
(R,S)
ξ , for i ≤ j ≤ k and (R, S) ∈ Wj

ξ , is designated as an entry cluster. The free cluster AF
ξ ,

the internal cluster BI
ξ , and every boundary cluster A

(R,S)
ξ , for i ≤ j ≤ k and (R, S) ∈ Wj

ξ ,
is designated as an exit cluster. For any cell □ and its child □′ ∈ C[□], we use V ↓

□(□′) and
V ↑
□(□′) to denote the entry and exit clusters of V□(□′).

We classify entry and exit clusters in this way for the following reason. Consider any
augmenting path P . For any cell □′, consider any edge (u, v) of P such that (u, v) is in G□′

M

but the edge preceding (u, v) (resp. succeeding (u, v)) is not. Then u has to be a point in an
entry (resp. exit) cluster.

Internal edges: Let □′ be any child of □. For any pair of clusters (X1, X2) ∈
V ↓
□(□′) × V ↑

□(□′), we create an internal edge (X1, X2) in AG□. Let E□(□′) denote
the set of these edges. For any (X ′

1, X ′
2) ∈ V (□′) × V (□′), define P□′(X ′

1, X ′
2) to

be the minimum-weight path between X ′
1 and X ′

2 in AG□′ . Define P (X1, X2) =
arg minX′

1∈D(X1),X′
2∈D(X2) Φ(P□′(X ′

1, X ′
2)). We set Φ(X1, X2) to be the weight of the path

P (X1, X2) in AG□′ .
For consistency, if □ is a cell of level h− 1, any edge that lies completely inside a child of

□ becomes an internal edge and edges that go between two points in two different children is
referred to as a bridge edge.

We abuse notation and refer to any directed path P between two free clusters in the
compressed residual graph AG□ as an augmenting path. For efficiency reasons, we only
store the internal edges of E□. To compute the bridge edges and their costs efficiently, we
construct an ε-WSPD as described in Section 2. In the following lemma, we bound the total
size of all compressed residual graphs across all cells. See Appendix B for a proof.

▶ Lemma 14. The total size of all compressed residual graphs across all cells of T is
O(n log n(ε−1 log log n)O(d)).

▶ Lemma 15. For any cell □ and for any augmenting path P from u to v in G□M , there
is an augmenting path P ′ in AG□ that goes from the cluster of u to the cluster of v and
Φ(P ′) ≤ ϕ(P ).

5.3 Compressed Feasibility
We use the compressed residual graph to compute an augmenting path. To assist us with
the computation of this path, we describe a set of dual weights of V□ and a set of feasibility
conditions for the edges of the compressed graph. Let □ be a cell of level i. For every X ∈ V□,
we assign a dual weight y(X). We say that a matching and dual weights are compressed
feasible with respect to AG□ if, for any directed edge (X, Y ) ∈ E□,

y(X)− y(Y ) ≤ Φ(X, Y ). (9)

Next, we define slack on any compressed edge (X, Y ) to be s(X, Y ) = Φ(X, Y )−y(X)+y(Y ).
Note that s(X, Y ) ≥ 0 for a compressed feasible matching. We say that an edge (X, Y ) is
admissible if s(X, Y ) = 0. Similar to (3), one can express the weight of any path P in AG□
from X to Y using the slacks on its edges as follows.

Φ(P ) =
∑

(X′,Y ′)∈P

(y(X ′)− y(Y ′) + s(X ′, Y ′)) = y(X)− y(Y ) +
∑

(X′,Y ′)∈P

s(X ′, Y ′). (10)

After any execution of Build, HungarianSearch, or Augment procedures at □ within
our algorithm, in addition to (J1) and (J2), our algorithm also satisfies a third invariant. Let
□′ be either □ or any descendant of □ in T .
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(J3) There exists a set of dual weights y(·) on V□′ that satisfy compressed feasibility conditions
for edges in AG□′ . In addition, for any X ∈ V□′ , if X is a free cluster of A, then y(X) = 0
and if X is a free cluster of B, then y(X) = maxX′∈V□′ y(X ′). Furthermore, for any
cluster X ∈ V□′ ,

(a) if X is an internal entry (resp. exit) cluster, y(X) ≤ minX′∈D(X) y(X ′) (resp. y(X) ≥
maxX′∈D(X) y(X ′)), and

(b) if X is a free or a boundary cluster then for every cluster X ′ ∈ D(X), y(X ′) = y(X).

5.4 Details of the Procedures
Assume that the algorithm has executed until level i + 1 and (J1)–(J3) hold at the end. We
describe the implementation of Build, HungarianSearch and Augment procedures and
show that (J1)–(J3) continue to hold after their executions.

5.4.1 Build procedure
For any cell □ of level i and for every □′ ∈ C[□], we have a set of compressed feasible
dual weights on V□′ . The Build procedure creates a cluster X at □ by simply combining
the clusters D(X) of its children and set its dual weight y(X) to minX′∈D(X) y(X ′) (resp.
maxX′∈D(X) y(X ′)) provided X is an entry (resp. exit) cluster.

In order to compute the weight of any internal edge (X, Y ) ∈ V ↓
□(□′)×V ↑

□(□′), we observe
that from (10), the minimum-weight path P (X, Y ) is also the path with the smallest total
slack between any two clusters X ′, Y ′ ∈ D(X) × D(Y ) in AG□′ . For every entry cluster
X ∈ V ↓

□(□′), this can be found in a straight-forward way using an execution of Dijkstra’s
shortest-path algorithm. More specifically, we add a source s to AG□′ , connect s to all
X ′ ∈ D(X) with an edge of weight of y(X ′), and replace the weight of every other edge
in AG□′ with its slack. Then, we execute Dijkstra’s algorithm in AG□′ from s to find the
distance of each cluster Y ′ from s, denoted by κY ′ . For any exit cluster Y ∈ V ↑

□(□′), we set
the weight of the edge (X, Y ) in AG□, to be Φ(X, Y ) = minY ′∈D(Y ){κY ′ − y(Y ′)}.

The Build procedure does not affect the invariants (J1) and (J2). The following lemma
states that the invariant (J3) holds after the execution of Build procedure.

▶ Lemma 16. The dual weights assigned to the clusters of V□ by the Build procedure satisfy
(J3).

Efficiency of the Build procedure: To compute the internal edges incident on the entry
cluster X, instead of using an O(|V□′ |2) time Dijkstra’s algorithm, as in [14], we use the
WSPDs in a straight-forward way to compute the shortest path in O(|E□′ | log |E□′ |) time.
Given that the number of entry clusters in each cell is log n(ε−1 log log n)O(d) and since
|E□′ | = O(ε−O(d)n□′ log n logO(d) log n)) (from Lemma 14), the total running time of the
Build procedure is

O

 ∑
□′∈C[□]

∑
X∈V ↓

□
(□′)

ε−O(d)n□′ log2 n logO(d) log n

 = O(n□ log3 n□(ε−1 log log n)O(d)).

5.4.2 HungarianSearch procedure
Let □ be a cell of level i. The HungarianSearch procedure on □ consists of two parts.
In the first part, the algorithm modifies the dual weights of V□ and make the edges on the
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minimum-weight augmenting path in AG□ admissible (Search step). Then, the algorithm
updates the dual weights of the clusters and points and may modify the matching M

to another feasible matching M ′ with w(M ′) = w(M). Then, it returns an admissible
augmenting path in G□M ′ with respect to M ′ (Update step). This path is also the minimum
net-cost augmenting path with respect to M ′.

Search Step: From (10), the path from a free cluster F ′ to a free cluster F with the
smallest total slack is also the minimum-weight path between F ′ and F in AG□. To compute
this path, we replace the cost of every edge in AG□ with its slack and then execute a
Dijkstra’s algorithm that starts at the free clusters of B. Let PX be the shortest path
from a free cluster of B to any cluster X and κX be its cost. Let F be a free cluster of
A that has the smallest shortest path. If there are no free clusters of A in AG□, then the
HungarianSearch returns NULL. Let the path PF start at some free cluster F ′ of B.
PF is the minimum-weight augmenting path in AG□ and y(F ) = 0 (from (J3)). Therefore,
from (10), the augmenting path PF has a weight of Φ(PF ) = y(F ′) + κF . If Φ(PF ) ≤ µi,
let U ⊆ V□ be the subset of clusters whose shortest-path distances from s is less than κF .
We update the dual weights of any cluster X ∈ U by setting y(X)← y(X)− κX + κF . If
Φ(PF ) > µi, the algorithm sets κF = µi−y(F ′), updates the dual weights as described above
and then returns NULL. The dual updates to the clusters of V□ in the search step ensures
that the dual weights of free clusters of B do not exceed µi.

For any cell □1 and its child □2 ∈ C[□1], we say that the dual weights of V□1 dominates
the dual weights of V□2 if for each exit cluster X ∈ V ↑

□1
(□2), y(X) ≥ maxX′∈D(X) y(X ′).

During the search step, the dual weight of any cluster X ∈ V□ is non-decreasing. Therefore,
after the search step, for each child □′ ∈ C[□], the dual weights of V□ dominates the dual
weights of V□′ . Furthermore, the updated dual weights are compressed feasible and the edges
of PF is admissible.

▶ Lemma 17. For any cell □, after the execution of the search step of the HungarianSearch
procedure, the updated dual weights of V□ are compressed feasible and every edge on the
minimum-weight path computed by the search step is admissible. Furthermore, for any child
□′ ∈ C[□], the dual weights of V□ dominate the dual weights of V□′ .

After the search step, the updated dual weights of V□ remain compressed feasible and the
edges of PF are admissible. In the Update Step, we expand the path PF into an admissible
augmenting path in the residual graph. We describe a procedure called Sync that assists in
expanding this path. In particular, consider any admissible edge (X, Y ) on PF where (X, Y )
is an internal edge for some child □′ ∈ C[□]. The Sync procedure updates the dual weight
of V□′ so that the path P (X, Y ) becomes admissible.

Sync Procedure: The Sync procedure takes any cell □1 and its child □2 ∈ C[□1] along
with a set of compressed feasible dual weights of V□1 and V□2 such that the dual weights of
V□1 dominates the dual weights of V□2 . This procedure then generates a set of compressed
feasible dual weights of V□2 such that the dual weights of V□1 and V□2 satisfy conditions (a)
and (b) of (J3). Furthermore, if any internal edge (X, Y ) ∈ E□1(□2) is admissible, then the
path P (X, Y ) is also admissible with respect to the dual weights of V□2 . The description
of the Sync procedure is provided in Appendix C. Let □1 be a cell of level j of T . The
execution of the Sync procedure on □2 requires an execution of Dijkstra’s algorithm on
AG□2 and takes a total of O(µj+1ε−O(d) log3 n log2 log n) time. The following lemma states
the important properties of the Sync procedure.
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▶ Lemma 18. For any cell □1 and any child □2 ∈ C[□1], suppose the set of dual weights of
V□1 and V□2 are compressed feasible and the set of dual weight of V□1(□2) dominates the
set of dual weights of V□2 . After applying the Sync procedure on □2, we have that:

(i) The updated dual weights on AG□2 are compressed feasible,
(ii) For any cluster X ∈ V□1(□2), the dual weight of X and clusters in D(X) satisfies the

conditions (a) and (b) of (J3), and,
(iii) If □2 is not a leaf cell, for any □3 ∈ C[□2], the dual weights of V□2(□3) dominates the

set of dual weights of V□3 .
Using Lemma 18 part (iii), it is clear that one can recursively apply the Sync procedure

on all descendants of a cell □. The following lemma shows that after the search step, if
we apply the Sync procedure on all descendants of every cell □ ∈ ∆[i], the dual weights
assigned to all clusters and points satisfy (J1)–(J3).

▶ Lemma 19. After executing the search step of HungarianSearch on AG□, for every
□ ∈ ∆[i], suppose we apply Sync to □ and all its descendants. The resulting up-to-date dual
weights satisfy (J1)–(J3).

The following lemma helps in converting the minimum-weight path obtained by the search
step into an admissible augmenting path.

▶ Lemma 20. For any admissible internal edge (X, Y ) ∈ E□(□′), let X ′ ∈ D(X) and
Y ′ ∈ D(Y ) be the clusters containing the first and the last vertex of some P (X, Y ). Then,
after calling the Sync procedure on □′, the path P (X, Y ) is admissible, y(X ′) = y(X), and
y(Y ′) = y(Y ).

Using the Sync procedure, the Update step converts the augmenting path PF returned
by the Search step to an admissible augmenting path P̃F in the residual graph. In this
process, the Update step might change the matching M to another matching M ′ with the
same weight and size. We describe the Update step as a recursive procedure that initially
takes PF as the input.

Update step: For any cell □′, the Update step takes any admissible path P = ⟨X =
X1, X2, . . . , Xm = Y ⟩ in AG□′ as input and returns an admissible alternating path from a
point p to p′ in G□′

M with the property that y(p) = y(X) and y(p′) = y(Y ).
If □′ is a cell of level h− 1, then P is also an admissible path in G□′

M and the procedure
returns this path. Otherwise, let k = lev(□′) < h− 1 be the level of □′. Let I denote the set
of all internal edges on the path P . Note that I is a set of vertex-disjoint edges. Let B be
the set of all clusters Xt on P that do not participate in any edge of I. It is easy to see that
B is a set of boundary clusters.

For any internal edge (Xj , Xj+1) ∈ I, let □j ∈ C[□′] such that (Xj , Xj+1) ∈ E□′(□j).
We execute the Sync procedure on □j . Since (Xj , Xj+1) is an admissible edge, the path
P (Xj , Xj+1) is admissible with y(X ′

j) = y(Xj) and y(X ′
j+1) = y(Xj+1) (From Lemma 20).

We recursively apply the Update step on P (Xj , Xj+1).
Assume that for each internal edge (Xj , Xj+1) ∈ I, this recursive call has returned an

admissible path Πj in the residual graph from a point pj ∈ Xj to a point pj+1 ∈ Xj+1 with
y(pj) = y(Xj) and y(pj+1) = y(Xj+1). We select the point pj for the cluster Xj and the
point pj+1 for the cluster Xj+1. For any boundary cluster Xt ∈ B, we select an arbitrary
point pt. Let Z be the set of all ancestors of pt in T of level greater than k. First, we
iteratively apply Sync on every cell in Z in increasing order of their level. After all executions
of the Sync procedure, from Lemma 18 (ii), y(pt) = y(Xt). Thus, from every cluster Xj on
P , we have selected one point pj with y(pj) = y(Xj).

Next, we construct the admissible alternating path P̃ corresponding to the path P as
follows. For every internal edge (Xj , Xj+1) ∈ I, we replace (Xj , Xj+1) with the path Πj .
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Figure 3 (a) Compact minimum-weight path P in AG□. (b) and (c) show how the matching M

is modified to a matching M ′ to obtain an augmenting path.

For every bridge edge (Xj , Xj+1), if (Xj , Xj+1) is a non-matching arc, we simply add an
edge from pj to pj+1 to the path. If (Xj , Xj+1) is a matching arc, then both Xj and Xj+1
are boundary clusters. While there may not be a matching edge between pj and pj+1,
we know that there is some matching edge (a, b) such that a ∈ Xj and b ∈ Xj+1. Let Z

(resp. Z ′) be the set of all ancestors of a (resp. b) of level greater than k. We apply the
Sync procedure on the cells in Z (resp. Z ′) in increasing order of their level. Then, we
modify our matching M to M ′ as follows: Add matching edges (pj , pj+1), (a, m(pj)), and
(b, m(pj+1)) to the matching and remove the edges (a, b), (pj , m(pj)), and (pj+1, m(pj+1))
from the matching (See Figure 3). The new matching continues to be feasible since the
dual weights of a (resp. b) and pj (resp. pj+1) are identical. This is because Xj (resp.
Xj+1) is a boundary cluster and therefore, from Lemma 18 (ii), the application of the Sync
procedure on the ancestors of pj (resp. pj+1) and a (resp. b) will make y(a) = y(pj) (resp.
y(b) = y(pj+1)). Note that, for every internal edge (Xj , Xj+1), the path Πj consists of only
admissible edges. Furthermore, for every bridge edge (Xj , Xj+1), the edge (pj , pj+1) added
to the path is admissible. This follows from the fact that y(pj) = y(Xj), y(pj+1) = y(Xj+1),
and (Xj , Xj+1) is admissible. Finally, the dual weight of the first (resp. last) point p1 (resp.
pm) is equal to y(X) (resp. y(Y )) as desired. This completes the description of the Update
step. Let P̃F be the admissible augmenting path in G□ returned by the Update step with
PF as input.

▶ Lemma 21. The matching M can be modified to another matching M ′ so that, w(M) =
w(M ′), M ′, y(·) is feasible and the compressed residual graph at each node remains unchanged.
Furthermore, there is an admissible augmenting path in the residual graph GM ′ .

Recollect that, we only require the existence of a set of dual weights that satisfy the
conditions in (J1)–(J3). For efficiency reasons, the Update step does not maintain the
up-to-date dual weights explicitly. Instead, it computes the up-to-date dual weights for all
cells □′ whose V□′ or M□′ may change after augmenting M along P̃F . For every other cell
□′′, from Lemma 22 and Lemma 19, we can always retrieve the up-to-date dual weights for
these cells satisfying (J1)–(J3) by recursively applying Sync on □′′ and all its descendants.

▶ Lemma 22. During the execution of our algorithm, consider a sequence of consecutive
applications of the Sync procedure on a cell □. If M□ and the clusters in V□ remain
unchanged, then, this sequence of Sync executions can be replaced with the last one while
producing the same set of dual weights of V□.

Efficiency of the HungarianSearch procedure: The search step requires execution of a single
Dijkstra’s algorithm on AG□ which takes O(µi+1ε−O(d) log3 n log2 log n) time. Applying
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Sync procedure for a cell □′ of level j requires an execution of Dijkstra’s algorithm on AG□′ ,
which takes O(µj+1ε−O(d) log3 n log2 log n) time. Recall that for any level j of T and an
augmenting path P̃F on the residual graph, kj denotes the number of level j cells containing
at least one point of P̃F . In the Update step, For each level j > i, we execute the Sync
procedure on the cell of level j containing at least one point of P̃F . Furthermore, during the
Update step, for each bridge matching arc (Xj , Xj+1) the algorithm may also apply the Sync
procedure on an additional O(log log n) cells. This is done before the algorithm modifies
the matching. These executions of the Sync procedure can be charged to the O(log log n)
Sync procedures executed for the ancestors of points pj ∈ Xj and pj+1 ∈ Xj+1. Therefore,
there are at most O(kj log log n) executions of the Sync procedure during the execution
of the Update step. The execution time of HungarianSearch procedure, therefore, is
O(µi+1ε−O(d) log3 n log2 log n +

∑h−1
j=i+1 kjµj+1ε−O(d) log3 n log3 log n).

5.4.3 Augment procedure
Given an augmenting path P = ⟨b0, a0, b1, · · · , bk, ak⟩ with respect to the matching M , the
Augment procedure will simply update M ←M ⊕ P . After augmentation, any edge (ai, bi)
is a matching edge and any edge (bi+1, ai) is a non-matching edge (Note that the direction
of the edges are reversed after the augmentation). For a new matching edge (ai, bi) after
an augmentation, suppose □i is the least common ancestor of ai and bi. Let X, Y ∈ V□i

be
the pair of boundary clusters such that (ai, bi) ∈ X × Y . If there exists another matching
edge (a′

i, b′
i) ∈ (X × Y ) \ P , then ai and bi inherit their dual weights, i.e., y(ai) ← y(a′

i)
and y(bi) ← y(b′

i). Otherwise, their dual weight remains unchanged. This completes the
description of the Augment procedure. For every new matching edge (ai, bi), the procedure
may inherit the dual weights from another matching edge (a′

i, b′
i) that did not participate

in P . Since (J2) holds prior to augmentation, y(a′
i) and y(b′

i) satisfy (J2). Therefore, post
augmentation, y(ai) and y(bi) also satisfy (J2).

The following lemma shows that the dual weights of the points after the Augment
procedure remains feasible and (J1) holds.
▶ Lemma 23. After augmenting the matching and updating the dual weights by the Augment
procedure, the dual weights of the points are feasible with respect to the new matching.

The vertex and the edge sets of the compressed residual graph change after augmentation.
The Augment procedure creates the new clusters at all ancestors of every point in P in
a straight-forward way. In a bottom-up fashion, for any cluster X ∈ V□, if X is an exit
(resp. entry) cluster, it assigns maxX′∈D(X) y(X ′) (resp. minX′∈D(X) y(X ′)) as y(X). For
each edge on P , the procedure will update the bridge edges in AG□ in a straight-forward
way. The following lemma shows that the updated dual weights are compressed feasible with
respect to AG□.
▶ Lemma 24. After augmenting the matching, the new set of clusters and their dual weights
y(·) satisfy (J3).

Next, for any □′ ∈ C[□], in order to update the weights on the internal edges E□(□′)
in AG□, we apply the Build procedure. From Corollary 13, if □ is a cell of level i, then
|V□| = O(µ1/4

i+1ε−d log n log log n). Since there at most O(|V□|) entry clusters in V□ and the
Build procedure executes that many Dijkstra’s algorithm to construct the internal edges,
the total time taken is bounded by O(µi+1ε−O(d) log3 n log3 log n).

The Augment procedure executes Build procedure on all ancestors of any
vertex of P in a bottom-up fashion. Therefore, the total time taken is
O(

∑i
j=1(kjµi+1ε−O(d) log3 n log3 log n)).
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A Preprocessing Step

Similar to some of the earlier algorithms [16, 14], we perform the following preprocessing
step that makes the input "well-conditioned" at a slight increase in the cost of the optimal
matching. Using a quad-tree based greedy algorithm [6], we compute a c1 log n-approximate
matching M0 of A and B, in O(n log n) time, for some constant c1 ≥ 0 [7]. Let w0 = ¢(M0).
Then w0

c1 log n ≤ ¢(M∗) ≤ w0.
For any integer i ∈ [0, log(c1 log n)], define βi = w0/2i; there is an i such that βi ≤

¢(M∗) ≤ βi−1. Set t(n) = c0n(ε−O(d3) + log3 n(ε−1 log log n)O(d) + ε−O(d) log4 n log log4 n)
for some sufficiently large constant c0. We run the algorithm described in Section 4 for at
most t(n) steps on each choice of βi. In the i-th iteration, either the algorithm returns a
perfect matching of A and B or terminates without computing a perfect matching. Among
the perfect matchings computed by the algorithm, we return the one with the smallest
cost. Theorem 10 ensures that if βi ≤ ¢(M∗) ≤ βi−1 then with probability at least 1/2, the
algorithm returns an ε-approximate matching within t(n) time. Now forward, we assume
that we have computed a value β > 0 such that ¢(M∗) ≤ β ≤ 2¢(M∗). As in [16, 14], by
scaling A ∪B and snapping points to an integer grid, we can assume A and B satisfy the
following conditions: (P1) All input points have integer coordinates bounded by nO(1). (P2)
No integer grid point contains points of both A and B. (P3) ¢(M∗) ∈

[
3

√
dn

ε , 9
√

dn
ε

]
. We

compute an (ε/2)-approximate matching of A and B satisfying (P1)− (P3) in t(n) time.

B Missing Proofs

Proof of Lemma 3: If the edge (a, b) intersects the boundary of a cell at level i + 1, then,
lev(a, b) ≤ i. Therefore, Pr[lev(a, b) = i] ≤

√
d∥a−b∥
ℓi+1

. As a result,

E[δab] ≤
h−1∑
i=0

Pr[lev(a, b) = i].µi+1 ≤
h−1∑
i=0

√
d∥a− b∥
ℓi+1

.
εℓi+1

c2
√

d(h− i)2
= ε

c2
∥a−b∥

h−1∑
i=0

1
(h− i)2 .

∑∞
i=1

1
i2 = ζ(2) = π2

6 , where ζ(·) is the Riemann zeta function. Therefore, E[δab] ≤
π2

6c2
ε∥a− b∥.

Proof of Lemma 9: To prove this lemma, first, we bound the total additive error across all
augmenting paths computed during the execution of our algorithm.

▶ Lemma 25.
∑

Pi∈P
∑

(u,v)∈Pi∩Mi
δuv = O(W log n).

Every level j − 1 edge in γj appears as a matching or a non-matching edge. Furthermore,
any matching edge will first appear as a non-matching edge in an augmenting path and carry
an additive error of µj+1. Therefore, we charge at most two level j − 1 edges in γj to the
additive error of any non-matching edge. So, the total additive error on all non-matching
edges of γj is at least γjµj+1/2. Combining with Lemma 25, we get γj = O(W log n/µj+1).
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Proof of Lemma 12: By construction, the number of subcells of a cell □′ is bounded by
the number of children of □′; i.e, |S□′ | ≤ |C[□′]|. Furthermore, for any cell □′ at level j,
|C[□′]| ≤ ( ℓj

ℓj+1
)d = ℓ

d(1−α)
j . As a result,

∑
□′∈C[□]

|S□′ | ≤
∑

□′∈C[□]

|C[□′]| ≤ ℓ
d(1−α)
i ℓ

d(1−α)
i+1 ≤ ℓ

2d
8d+2
i . (11)

From Lemma 2, µi+1 ≥ ℓi+2. Furthermore, from the construction of the tree and since d ≥ 2,
ℓi+2 = ℓ

( 8d+1
8d+2 )2

i ≥ ℓ
8d

8d+2
i . Plugging this in (11), we get

∑
□′∈C[□] |S□′ | = O(µ1/4

i+1).

Proof of Lemma 14: By construction, for any cell □ and any child □′ ∈ C[□] and for each
pair of clusters (X, Y ) ∈ V ↓

□(□′)×V ↑
□(□′), there exists at most one internal edge in E□. There-

fore, each cluster X ∈ V□(□′) has degree at most |V□(□′)| = O(|S□′ |ε−d log n log log n) =
O(ε−O(d) log n logO(d) log n), where the last equality is resulted since |S□′ | = O(ε−d log2d log n).
Summing over all clusters in V□,

|E□| = O(ε−O(d)|V□| log n logO(d) log n).

Summing across all cells in T , we get∑
□∈T

|E□| =
∑
□∈T

|V□| ×O(ε−O(d) log n logO(d) log n). (12)

Since each point participates in a single cluster per level and O(log log n) clusters overall, we
get

∑
□∈T |V□| by O(n log log n). Plugging this in (12), we can conclude that the total size

of the compressed residual graph across all cells is O(n log n(ε−1 log log n)O(d)).

C Details of the Sync procedure

For any entry cluster X ∈ V ↓
□ and any cluster X ′ ∈ D(X), the dual weight y(X ′) needs

to be no less than the updated y(X) (In the case of free or boundary clusters, it should
be equal). We define inc(X ′) to be the value by which y(X ′) should be increased, i.e.,
inc(X ′) = y(X)− y(X ′). Note that inc(X ′) can be negative. Let ρX = maxX′∈D(X) inc(X ′)
and let ρ = max{0, maxX∈V ↓

□
(□′) ρX}. The value ρ corresponds to the largest increase in

dual weights we desire across all child-clusters in each entry cluster. So, for any cluster
X ∈ V ↓

□(□′) and X ′ ∈ D(X), −∞ < inc(X ′) ≤ ρ.
Let AG′ be an augmented compressed residual network that is created by adding a vertex

s to AG□′ and connecting s to every X ′ ∈ D(X) for any entry cluster X ∈ V ↓
□(□′). We set

the weight of (s, X ′) to be ρ− inc(X ′). Since inc(X ′) ≤ ρ, the weight on the edge will be
non-negative. For every other edge (U, V ), we set its weight to be the slack s(U, V ). We then
execute Dijkstra’s algorithm on AG′ from the source s. For any cluster V , let κV denote
the weight of the shortest-path distance from s to V . The dual updates are done in an
identical fashion to the HungarianSearch. Let U denote the set of all clusters V ∈ V□′

with κV < ρ. For any V ∈ U , we update the dual weight y(V )← y(V )− κV + ρ.
After updating these dual weights, for every boundary and free exit cluster X ∈ V ↑

□(□′)
and any X ′ ∈ D(X), we set y(X ′)← y(X). This step will not decrease the dual weight of
any cluster. This completes the description of Sync procedure.
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